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A lot of computation
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• Memory: 32GB 
• Computation: TFLOPS/s 

Cloud AI Mobile AI Tiny AI (AIoT)

• Memory: 4GB 
• Computation: GFLOPS/s

• Memory: <100 KB 
• Computation: <MFLOPS/s

Challenge: Efficient Inference on Diverse Hardware 
Platforms 

3

• Different hardware platforms have different resource constraints. We need to customize 
our models for each platform to achieve the best accuracy-efficiency trade-off, 
especially on resource-constrained edge devices. 

less 
resource

less 
resource
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Challenge: Efficient Inference on Diverse Hardware 
Platforms 
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Design Cost (GPU hours)

200

      for training iterations: 
 forward-backward(); 

 

The design cost is calculated under the assumption of using MobileNet-v2. 
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Challenge: Efficient Inference on Diverse Hardware 
Platforms 

5
The design cost is calculated under the assumption of using MnasNet. 
[1] Tan, Mingxing, et al. "Mnasnet: Platform-aware neural architecture search for mobile." CVPR. 2019.

Design Cost (GPU hours)

40K

      for training iterations: 
 forward-backward(); 

 if good_model: break; 

for search episodes:

for post-search training iterations:
forward-backward();

（1）
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Challenge: Efficient Inference on Diverse Hardware 
Platforms 
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Diverse Hardware Platforms

The design cost is calculated under the assumption of using MnasNet. 
[1] Tan, Mingxing, et al. "Mnasnet: Platform-aware neural architecture search for mobile." CVPR. 2019.

160K

40K

Design Cost (GPU hours)

2019 2017 2015 2013

      for training iterations: 
 forward-backward(); 

 if good_model: break; 

for search episodes:
for devices:

for post-search training iterations:
forward-backward();

（2）

（1）
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Challenge: Efficient Inference on Diverse Hardware 
Platforms 
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Diverse Hardware Platforms

Cloud AI (  FLOPS)1012 Mobile AI (  FLOPS)109 Tiny AI (  FLOPS)106

…

160K

40K

1600K

Design Cost (GPU hours)

      for training iterations: 
 forward-backward(); 

 if good_model: break; 

for many devices:
for search episodes:

for post-search training iterations:
forward-backward();

The design cost is calculated under the assumption of using MnasNet. 
[1] Tan, Mingxing, et al. "Mnasnet: Platform-aware neural architecture search for mobile." CVPR. 2019.

（2）

（1）
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Challenge: Efficient Inference on Diverse Hardware 
Platforms 
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Diverse Hardware Platforms

Cloud AI (  FLOPS)1012 Mobile AI (  FLOPS)109 Tiny AI (  FLOPS)106

…

160K

40K

1600K

Design Cost (GPU hours)

 11.4k lbs CO2 emission→

 45.4k lbs CO2 emission→

 454.4k lbs CO2 emission→

1 GPU hour translates to 0.284 lbs CO2 emission according to  
Strubell, Emma, et al. "Energy and policy considerations for deep learning in NLP." ACL. 2019.

      for training iterations: 
 forward-backward(); 

 if good_model: break; 

for many devices:
for search episodes:

for post-search training iterations:
forward-backward();

（2）

（1）
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Evolved Transformer ICML’19, ACL’19

We need Green AI: 
Solve the Environmental Problem of NAS

Ours 52  4 orders of magnitude  ACL’20
Hardware-Aware Transformer 

TinyML comes at the cost of BigML
(inference) (training/search)

Problem:
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OFA: Decouple Training and Search

10

      for training iterations: 
 forward-backward(); 

 if good_model: break; 

for devices:
for search episodes:

=>

（1）

（2）

for post-search training iterations:
forward-backward();

      for OFA training iterations: 
 forward-backward(); 

 
for devices:

for search episodes: 
sample from OFA; 
if good_model: break;

training

search

direct deploy without training;

decouple

Conventional NAS Once-for-All:
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Challenge: Efficient Inference on Diverse Hardware 
Platforms 

11

Diverse Hardware Platforms

…

Once-for-All Network

Cloud AI (  FLOPS)1012 Mobile AI (  FLOPS)109 Tiny AI (  FLOPS)106

160K

40K

1600K

Design Cost (GPU hours)

 11.4k lbs CO2 emission→

 454.4k lbs CO2 emission→

 45.4k lbs CO2 emission→

1 GPU hour translates to 0.284 lbs CO2 emission according to  
Strubell, Emma, et al. "Energy and policy considerations for deep learning in NLP." ACL. 2019.

      for OFA training iterations: 
 forward-backward(); 

 
for devices:

for search episodes: 
sample from OFA; 
if good_model: break;

training

search
decouple

direct deploy without training;
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Once-for-All Network:  
Decouple Model Training and Architecture Design

12

once-for-all network
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Once-for-All Network:  
Decouple Model Training and Architecture Design
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once-for-all network
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Once-for-All Network:  
Decouple Model Training and Architecture Design
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once-for-all network
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Once-for-All Network:  
Decouple Model Training and Architecture Design
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…

once-for-all network
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Challenge: how to prevent different subnetworks 
from interfering with each other?

16
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Solution: Progressive Shrinking

17

• More than  different sub-networks in a single once-for-all network, covering 
4 different dimensions: resolution, kernel size, depth, width.  

• Directly optimizing the once-for-all network from scratch is much more challenging 
than training a normal neural network given so many sub-networks to support. 

1019
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• More than  different sub-networks in a single once-for-all network, covering 
4 different dimensions: resolution, kernel size, depth, width.  

• Directly optimizing the once-for-all network from scratch is much more challenging 
than training a normal neural network given so many sub-networks to support. 

1019

Train the  
full model

Shrink the model 
(4 dimensions)

Jointly fine-tune 
both large and 

small sub-networks

• Small sub-networks are nested in large sub-networks. 
• Cast the training process of the once-for-all network as a progressive shrinking and 

joint fine-tuning process.

once-for-all 
network

Progressive Shrinking

Solution: Progressive Shrinking
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Connection to Network Pruning

19

Train the  
full model

Shrink the model 
(only width)

Fine-tune  
the small net

single pruned 
network

Network Pruning

Train the  
full model

Shrink the model 
(4 dimensions)

Fine-tune  
both large and 
small sub-nets

once-for-all 
network

• Progressive shrinking can be viewed as a generalized network pruning with much 
higher flexibility across 4 dimensions.

Progressive Shrinking
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Progressive Shrinking
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Elastic 
Kernel Size

Elastic 
Depth

Elastic 
Width

Full Full FullElastic 
Resolution

Full

Partial
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Progressive Shrinking
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Depth
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Width

Full Full FullElastic 
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Progressive Shrinking
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Depth
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Width

Full Full FullElastic 
Resolution
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Progressive Shrinking
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Depth
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Width
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Progressive Shrinking
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Progressive Shrinking
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Progressive Shrinking
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Progressive Shrinking
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Progressive Shrinking
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Elastic 
Kernel Size

https://arxiv.org/abs/1908.09791


Once-for-All, ICLR’20

Progressive Shrinking
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Kernel Size
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Progressive Shrinking
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Progressive Shrinking
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Progressive Shrinking
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Progressive Shrinking
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Progressive Shrinking
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Progressive Shrinking
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Progressive Shrinking

36

Elastic 
Resolution

Elastic 
Kernel Size

Elastic 
Width

Full Full Full Full

Partial Partial

Elastic 
Depth

Partial

https://arxiv.org/abs/1908.09791


Once-for-All, ICLR’20

Progressive Shrinking
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Progressive Shrinking
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Progressive Shrinking
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Progressive Shrinking
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Progressive Shrinking
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Progressive Shrinking
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Progressive Shrinking
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Progressive Shrinking
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Progressive Shrinking
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Randomly sample input image  
size for each batch
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Progressive Shrinking
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Randomly sample input image  
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Randomly sample input image  
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Randomly sample input image  
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Progressive Shrinking
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Randomly sample input image  
size for each batch
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Progressive Shrinking
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Progressive Shrinking
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Progressive Shrinking
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unit i

shrink the depth
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O3

Gradually allow later layers in each unit  
to be skipped to reduce the depth 

Partial
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Progressive Shrinking
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Progressive Shrinking
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Progressive Shrinking

62

train with full width

channel 
importance

0.02 

0.15 

0.85 

0.63

channel 
sorting

progressively shrink the width

channel 
importance

0.82 

0.11 

0.46 
reorg.

reorg.

progressively shrink the width

channel 
sorting

O1
O2

O3

O1

O2

O1

Gradually shrink the width  
Keep the most important channels when shrinking via channel sorting

Full Full Full Full

Partial Partial Partial

Elastic 
Resolution

Elastic 
Kernel Size

Partial

Elastic 
Width

Elastic 
Depth

https://arxiv.org/abs/1908.09791


Once-for-All, ICLR’20
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Progressive Shrinking

68

Published as a conference paper at ICLR 2020
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Figure 2: Illustration of the progressive shrinking process to support different depth D, width W ,
kernel size K and resolution R. It leads to a large space comprising diverse sub-networks (> 1019).

sequence of layers where only the first layer has stride 2 if the feature map size decreases (Sandler
et al., 2018). All the other layers in the units have stride 1.

We allow each unit to use arbitrary numbers of layers (denoted as elastic depth); For each layer,
we allow to use arbitrary numbers of channels (denoted as elastic width) and arbitrary kernel sizes
(denoted as elastic kernel size). In addition, we also allow the CNN model to take arbitrary input
image sizes (denoted as elastic resolution). For example, in our experiments, the input image size
ranges from 128 to 224 with a stride 4; the depth of each unit is chosen from {2, 3, 4}; the width
expansion ratio in each layer is chosen from {3, 4, 6}; the kernel size is chosen from {3, 5, 7}.
Therefore, with 5 units, we have roughly ((3⇥ 3)2 + (3⇥ 3)3 + (3⇥ 3)4)5 ⇡ 2⇥ 1019 different
neural network architectures and each of them can be used under 25 different input resolutions. Since
all of these sub-networks share the same weights (i.e., Wo) (Cheung et al., 2019), we only require
7.7M parameters to store all of them. Without sharing, the total model size will be prohibitive.

3.3 TRAINING THE ONCE-FOR-ALL NETWORK

Naı̈ve Approach. Training the once-for-all network can be cast as a multi-objective problem, where
each objective corresponds to one sub-network. From this perspective, a naı̈ve training approach
is to directly optimize the once-for-all network from scratch using the exact gradient of the overall
objective, which is derived by enumerating all sub-networks in each update step, as shown in Eq. (1).
The cost of this approach is linear to the number of sub-networks. Therefore, it is only applicable to
scenarios where a limited number of sub-networks are supported (Yu et al., 2019), while in our case,
it is computationally prohibitive to adopt this approach.

Another naı̈ve training approach is to sample a few sub-networks in each update step rather than
enumerate all of them, which does not have the issue of prohibitive cost. However, with such a large
number of sub-networks that share weights thus interfere with each other, we find it suffers from
significant accuracy drop. In the following section, we introduce a solution to address this challenge
by adding a progressive shrinking training order to the training process. Correspondingly, we refer to
the naı̈ve training approach as random order.

Progressive Shrinking. The once-for-all network comprises many sub-networks of different sizes
where small sub-networks are nested in large sub-networks. To prevent interference between the
sub-networks, we propose to enforce a training order from large sub-networks to small sub-networks
in a progressive manner. We name this training order as progressive shrinking (PS). An example
of the training process with PS is provided in Figure 2, where we start with training the largest
neural network with the maximum kernel size (i.e., 7), depth (i.e., 4), and width (i.e., 6). Next, we
progressively fine-tune the network to support smaller sub-networks by gradually adding them into
the sampling space (larger sub-networks may also be sampled). Specifically, after training the largest
network, we first support elastic kernel size which can choose from {3, 5, 7} at each layer, while
the depth and width remain the maximum values. Then, we support elastic depth and elastic width
sequentially, as is shown in Figure 2. The resolution is elastic throughout the whole training process,
which is implemented by sampling different image sizes for each batch of training data. We also use
the knowledge distillation technique after training the largest neural network (Hinton et al., 2015;
Ashok et al., 2018; Yu & Huang, 2019b). It combines two loss terms using both the soft labels given
by the largest neural network and the real labels.

4

put it together:
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Performances of Sub-networks on ImageNet
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• Progressive shrinking consistently improves accuracy of sub-networks on ImageNet.
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How about search?

70

      for OFA training iterations: 
 forward-backward(); 

 
for devices:

for search episodes: 
sample from OFA; 
if good_model: break;

training

search
decouple

direct deploy without training;

//with evolution
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2.6x faster than EfficientNet 
1.5x faster than MobileNetV3
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More accurate than training from scratch
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• Once-for-all sets a new state-of-the-art 80% ImageNet top-1 accuracy under 
the mobile vision setting (< 600M MACs).
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OFA Enables Fast Specialization on Diverse Hardware Platforms 
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Diverse Hardware Platforms, 50+ Pretriained Models are Released
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Measured results on                  FPGA

OFA for FPGA Accelerators
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• Non-specialized neural networks do not fully utilize the hardware resource. There is a large room for 
improvement via neural network specialization. 
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We need Green AI 
Solve the Environmental Problem of NAS 

Evolved Transformer



How to save CO2 emission

2. Lite-transformer: Human-in-the-loop  
design. Apply human insights of HW&ML,  

rather than “just search it”

1. Once for all: Amortize the search cost  
across many sub-networks and  

deployment scenarios

Once-for-All, ICLR’20 Lite Transformer, ICLR’20

https://arxiv.org/abs/1908.09791
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OFA has broad applications

• Efficient Transformer

• Efficient Video Recognition

• Efficient 3D Vision

• Efficient GAN Compression



OFA’s Application: Hardware-Aware Transformer

3.7x smaller model size, same performance on WMT’14 En-De; 
3x, 1.6x, 1.5x faster on Raspberry Pi, CPU, GPU than Transformer Baseline 

12,000x less CO2 than evolved transformer
HAT, ACL’20
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Table 1

Human Life 11023 5000

American Life 36156

US car including 
fuel

126000

Evolved 
Transformer

626155

HAT (Ours) 6000

626,155

126,000

36,156

11,023Human Life 
(Avg. 1 year)

American Life 
(Avg. 1 year)
US Car w/ Fuel 
(Avg. 1 lifetime)

Evolved 
Transformer

HAT (Ours) 52 12041×

0 175K 350K 525K 700K
CO2 Emission (lbs)

Figure 9: The design cost measured in pounds of
CO2 emission. Our framework for searching HAT re-
duces the search cost by four orders of magnitude than
Evolved Transformer (So et al., 2019).

top ones; on the contrary, HAT trains all models
together inside SuperTransformer and sorts their
performance proxy to pick top ones. The superior
performance of HAT proves that the performance
proxy is accurate enough to find good models.

Quantization-Friendly. HAT is orthogonal to
other model compression techniques such as quan-
tization. We apply K-means quantization to HAT
and further reduce the model size. We initialize
centroids uniformly in the range of [min, max] of
each weight matrix and run at most 300 iterations
for each of them. Even without any fine-tuning, 4-
bit quantization can reduce the model size by 25⇥
with negligible BLEU loss compared to the Trans-
former baseline (Table 5). Interestingly, the 8-bit
model even increases the BLEU by 0.1 than the 32-
bit floating-point version, indicating the robustness
of our searched HAT.

5 Related Work
Transformer. Transformer (Vaswani et al., 2017)
has prevailed in sequence modeling. By stacking
identical blocks, the model obtains a large capac-
ity but incurs high latency. Recently, a research
trend is to modify the Transformer to improve the
performance (Chen et al., 2018; Wu et al., 2019b;
Sukhbaatar et al., 2019; Wang et al., 2019). Among
them, Wu et al. (2019b) introduced a convolution-
based module to replace the attention; Wang et al.
(2019) proposed a method for training deep Trans-
formers by propagating multiple layers together in
the encoder. In those architectures, all layers are
still identical without fully leveraging the design
space. Another trend is to apply non- or partially-
autoregressive models to cut down the iteration
number for decoding (Gu et al., 2019; Akoury et al.,
2019; Wei et al., 2019; Gu et al., 2018). Although
reducing latency, they all suffer from low perfor-
mance. Anonymous (2020) investigated mobile

BLEU Model Size Reduction

Transformer Float32 41.2 705MB –
HAT Float32 41.8 227MB 3⇥
HAT 8 bits 41.9 57MB 12⇥
HAT 4 bits 41.1 28MB 25⇥

Table 5: K-means quantization of HAT models on
WMT’14 En-Fr. 4-bit quantization reduces model size
by 25⇥ with only 0.1 BLEU loss than transformer base-
line. 8-bit quantization even increases BLEU by 0.1
than its float version.

settings for NLP tasks and proposed a multi-branch
mobile Transformer. However, it relied on FLOPs
for efficient model design, which is an inaccurate
proxy for hardware latency (Figure 2).

Neural Architecture Search. In the computer
vision community, to obtain efficient models, there
has been an increasing interest in automating
model design with Neural Architecture Search
(NAS) (Zoph and Le, 2017; Zoph et al., 2018;
Pham et al., 2018). Some of them also involved
hardware constraints into optimization such as
MNasNet (Tan et al., 2019), ProxylessNAS (Cai
et al., 2019b) and FBNet (Wu et al., 2019a). To
reduce the high design cost of NAS, supernet based
methods (Guo et al., 2019; Bender et al., 2018) ap-
ply a proxy for sub-network performance and adopt
search algorithms to find good sub-networks. For
NLP tasks, the benefits from the architecture search
have not been fully investigated. Recently, So et al.
(2019) proposed Evolved Transformer to search
for architectures under model size constraints and
surpassed the original Transformer baselines. How-
ever, it suffered from extremely high search costs
(250 GPU years), making it infeasible to special-
ize models for various hardware and tasks. Also,
hardware latency feedback was not taken into con-
siderations for better case-by-case specialization.

6 Conclusion

We propose Hardware-Aware Transformers (HAT)
framework to solve the challenge of efficient Trans-
former model deployment on the various kinds of
hardware platforms. We conduct hardware-aware
neural architecture search in an ample design space
with an efficient weight-shared SuperTransformer,
which consumes four orders of magnitude less cost
than the prior Evolved Transformer and discovers
high-performance low-latency models. We hope
HAT can open up an avenue towards efficient Trans-
formers deployment for real-world applications.
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7x less computation

Same Comp. 
+3.0% Acc.

TSM, ICCV’19

OFA’s Application: Efficient Video Recognition

7x less computation, same performance as TSM+ResNet50 
same computation, 3% higher accuracy than TSM+MobileNet-v2



OFA’s Application: Efficient 3D Recognition

self-driving: a whole trunk of GPU
Accuracy v.s. Latency Tradeoff

4x FLOPs reduction and 2x speedup over MinkowskiNet
3.6% better accuracy under the same computation budget.

AR/VR: a whole backpack  
of computer

followup of PVCNN, NeurIPS’19 (spotlight)

https://github.com/mit-han-lab/pvcnn


84GAN Compression, CVPR’20

OFA’s Application: GAN Compression

8-21x FLOPs reduction on CycleGAN, Pix2pix, GauGAN 
1.7x-18.5x speedup on CPU/GPU & Mobile CPU/GPU

https://arxiv.org/pdf/2003.08936.pdf


Summary: Once-for-All Network

• Released 50+ different pre-trained OFA models on diverse hardware platforms (CPU/GPU/FPGA/DSP). 
net, image_size = ofa_specialized(net_id, pretrained=True) 

• Released the training code & pre-trained OFA network that provides diverse sub-networks without training. 
ofa_network = ofa_net(net_id, pretrained=True)

• We introduce once-for-all network for efficient inference on diverse hardware platforms. 
• We present an effective progressive shrinking approach for training once-for-all networks.  

Project Page: https://ofa.mit.edu

• Once-for-all network surpasses MobileNetV3 and EfficientNet by a large margin under all scenarios,  
setting a new state-of-the-art 80% ImageNet Top1-accuracy under the mobile setting (< 600M MACs). 

• First place in the 3rd Low-Power Computer Vision Challenge, DSP track @ICCV’19 
• First place in the 4th Low-Power Computer Vision Challenge @NeurIPS’19, both classification & detection.

Train the  
full model

Shrink the model 
In 4 dimensions

Fine-tune  
both large and 
small sub-nets

once-for-all 
network

Progressive Shrinking

http://www.apple.com
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