
Massachusetts Institute of Technology
Song Han

AutoML for TinyML
with Once-for-All Network

Once-for-All, ICLR’20

https://arxiv.org/abs/1908.09791

AutoML for TinyML
with Once-for-All Network

Once-for-All, ICLR’20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Less Engineer Resources: AutoML
Less Computational Resources: TinyML

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

many engineers

large model

A lot of computation

fewer engineers small model

less computation

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

• Memory: 32GB
• Computation: TFLOPS/s

Cloud AI Mobile AI Tiny AI (AIoT)

• Memory: 4GB
• Computation: GFLOPS/s

• Memory: <100 KB
• Computation: <MFLOPS/s

Challenge: Efficient Inference on Diverse Hardware
Platforms

3

• Different hardware platforms have different resource constraints. We need to customize
our models for each platform to achieve the best accuracy-efficiency trade-off,
especially on resource-constrained edge devices.

less
resource

less
resource

https://arxiv.org/abs/1908.09791

Challenge: Efficient Inference on Diverse Hardware
Platforms

4

Design Cost (GPU hours)

200

 for training iterations:
 forward-backward();

The design cost is calculated under the assumption of using MobileNet-v2.

Once-for-All, ICLR’20

Challenge: Efficient Inference on Diverse Hardware
Platforms

5
The design cost is calculated under the assumption of using MnasNet.
[1] Tan, Mingxing, et al. "Mnasnet: Platform-aware neural architecture search for mobile." CVPR. 2019.

Design Cost (GPU hours)

40K

 for training iterations:
 forward-backward();

 if good_model: break;

for search episodes:

for post-search training iterations:
forward-backward();

（1）

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Challenge: Efficient Inference on Diverse Hardware
Platforms

6

Diverse Hardware Platforms

The design cost is calculated under the assumption of using MnasNet.
[1] Tan, Mingxing, et al. "Mnasnet: Platform-aware neural architecture search for mobile." CVPR. 2019.

160K

40K

Design Cost (GPU hours)

2019 2017 2015 2013

 for training iterations:
 forward-backward();

 if good_model: break;

for search episodes:
for devices:

for post-search training iterations:
forward-backward();

（2）

（1）

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Challenge: Efficient Inference on Diverse Hardware
Platforms

7

Diverse Hardware Platforms

Cloud AI (FLOPS)1012 Mobile AI (FLOPS)109 Tiny AI (FLOPS)106

…

160K

40K

1600K

Design Cost (GPU hours)

 for training iterations:
 forward-backward();

 if good_model: break;

for many devices:
for search episodes:

for post-search training iterations:
forward-backward();

The design cost is calculated under the assumption of using MnasNet.
[1] Tan, Mingxing, et al. "Mnasnet: Platform-aware neural architecture search for mobile." CVPR. 2019.

（2）

（1）

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Challenge: Efficient Inference on Diverse Hardware
Platforms

8

Diverse Hardware Platforms

Cloud AI (FLOPS)1012 Mobile AI (FLOPS)109 Tiny AI (FLOPS)106

…

160K

40K

1600K

Design Cost (GPU hours)

 11.4k lbs CO2 emission→

 45.4k lbs CO2 emission→

 454.4k lbs CO2 emission→

1 GPU hour translates to 0.284 lbs CO2 emission according to
Strubell, Emma, et al. "Energy and policy considerations for deep learning in NLP." ACL. 2019.

 for training iterations:
 forward-backward();

 if good_model: break;

for many devices:
for search episodes:

for post-search training iterations:
forward-backward();

（2）

（1）

https://arxiv.org/abs/1908.09791

Evolved Transformer ICML’19, ACL’19

We need Green AI:
Solve the Environmental Problem of NAS

Ours 52 4 orders of magnitude ACL’20
Hardware-Aware Transformer

TinyML comes at the cost of BigML
(inference) (training/search)

Problem:

Once-for-All, ICLR’20

OFA: Decouple Training and Search

10

 for training iterations:
 forward-backward();

 if good_model: break;

for devices:
for search episodes:

=>

（1）

（2）

for post-search training iterations:
forward-backward();

 for OFA training iterations:
 forward-backward();

for devices:

for search episodes:
sample from OFA;
if good_model: break;

training

search

direct deploy without training;

decouple

Conventional NAS Once-for-All:

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Challenge: Efficient Inference on Diverse Hardware
Platforms

11

Diverse Hardware Platforms

…

Once-for-All Network

Cloud AI (FLOPS)1012 Mobile AI (FLOPS)109 Tiny AI (FLOPS)106

160K

40K

1600K

Design Cost (GPU hours)

 11.4k lbs CO2 emission→

 454.4k lbs CO2 emission→

 45.4k lbs CO2 emission→

1 GPU hour translates to 0.284 lbs CO2 emission according to
Strubell, Emma, et al. "Energy and policy considerations for deep learning in NLP." ACL. 2019.

 for OFA training iterations:
 forward-backward();

for devices:

for search episodes:
sample from OFA;
if good_model: break;

training

search
decouple

direct deploy without training;

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Once-for-All Network:
Decouple Model Training and Architecture Design

12

once-for-all network

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Once-for-All Network:
Decouple Model Training and Architecture Design

13

once-for-all network

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Once-for-All Network:
Decouple Model Training and Architecture Design

14

once-for-all network

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Once-for-All Network:
Decouple Model Training and Architecture Design

15

…

once-for-all network

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Challenge: how to prevent different subnetworks
from interfering with each other?

16

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Solution: Progressive Shrinking

17

• More than different sub-networks in a single once-for-all network, covering
4 different dimensions: resolution, kernel size, depth, width.

• Directly optimizing the once-for-all network from scratch is much more challenging
than training a normal neural network given so many sub-networks to support.

1019

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20 18

• More than different sub-networks in a single once-for-all network, covering
4 different dimensions: resolution, kernel size, depth, width.

• Directly optimizing the once-for-all network from scratch is much more challenging
than training a normal neural network given so many sub-networks to support.

1019

Train the
full model

Shrink the model
(4 dimensions)

Jointly fine-tune
both large and

small sub-networks

• Small sub-networks are nested in large sub-networks.
• Cast the training process of the once-for-all network as a progressive shrinking and

joint fine-tuning process.

once-for-all
network

Progressive Shrinking

Solution: Progressive Shrinking

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Connection to Network Pruning

19

Train the
full model

Shrink the model
(only width)

Fine-tune
the small net

single pruned
network

Network Pruning

Train the
full model

Shrink the model
(4 dimensions)

Fine-tune
both large and
small sub-nets

once-for-all
network

• Progressive shrinking can be viewed as a generalized network pruning with much
higher flexibility across 4 dimensions.

Progressive Shrinking

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

20

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

Full Full FullElastic
Resolution

Full

Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

21

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

Full Full FullElastic
Resolution

Full

Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

22

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

Full Full FullElastic
Resolution

Full

Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

23

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

Full Full FullElastic
Resolution

Full

Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

24

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

Full Full FullElastic
Resolution

Full

Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

25

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

Full Full FullElastic
Resolution

Full

Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

26

Elastic
Resolution

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

Full Full Full Full

Partial Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

27

Elastic
Resolution

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

Full Full Full Full

Partial Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

28

Elastic
Resolution

Elastic
Depth

Elastic
Width

Full Full Full Full

Partial Partial

Elastic
Kernel Size

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

29

Elastic
Resolution

Elastic
Depth

Elastic
Width

Full Full Full Full

Partial Partial

Elastic
Kernel Size

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

30

Elastic
Resolution

Elastic
Depth

Elastic
Width

Full Full Full Full

Partial Partial

Elastic
Kernel Size

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

31

Elastic
Resolution

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

Full Full Full Full

Partial Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

32

Elastic
Resolution

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

Full Full Full Full

Partial Partial Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

33

Elastic
Resolution

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

Full Full Full Full

Partial Partial Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

34

Elastic
Resolution

Elastic
Kernel Size

Elastic
Width

Full Full Full Full

Partial Partial

Elastic
Depth

Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

35

Elastic
Resolution

Elastic
Kernel Size

Elastic
Width

Full Full Full Full

Partial Partial

Elastic
Depth

Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

36

Elastic
Resolution

Elastic
Kernel Size

Elastic
Width

Full Full Full Full

Partial Partial

Elastic
Depth

Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

37

Elastic
Width

Full Full Full Full

Partial Partial Partial

Elastic
Resolution

Elastic
Kernel Size

Elastic
Depth

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

38

Full Full Full Full

Partial Partial Partial

Elastic
Resolution

Elastic
Kernel Size

Partial

Elastic
Width

Elastic
Depth

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

39

Full Full Full Full

Partial Partial Partial

Elastic
Resolution

Elastic
Kernel Size

Partial

Elastic
Width

Elastic
Depth

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

40

Full Full Full Full

Partial Partial Partial

Elastic
Resolution

Elastic
Kernel Size

Partial

Elastic
Width

Elastic
Depth

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

41

Full Full Full Full

Partial Partial Partial

Elastic
Resolution

Elastic
Kernel Size

Partial

Elastic
Width

Elastic
Depth

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

42

Full Full Full Full

Partial Partial Partial

Elastic
Resolution

Elastic
Kernel Size

Partial

Elastic
Width

Elastic
Depth

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

43

Full Full Full Full

Partial Partial Partial

Elastic
Resolution

Elastic
Kernel Size

Partial

Elastic
Width

Elastic
Depth

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

44

Randomly sample input image
size for each batch

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

Full Full FullElastic
Resolution

Full

Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

45

Randomly sample input image
size for each batch

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

Full Full FullElastic
Resolution

Full

Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

46

Randomly sample input image
size for each batch

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

Full Full FullElastic
Resolution

Full

Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

47

Randomly sample input image
size for each batch

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

Full Full FullElastic
Resolution

Full

Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

48

Randomly sample input image
size for each batch

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

Full Full FullElastic
Resolution

Full

Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

49

Randomly sample input image
size for each batch

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

Full Full FullElastic
Resolution

Full

Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

50

7x7

Transform
Matrix
25x25

5x5

Transform
Matrix
9x9

3x3

Start with full kernel size
Smaller kernel takes centered weights via a transformation matrix

Elastic
Resolution

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

Full Full Full Full

Partial Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

51

7x7

Transform
Matrix
25x25

5x5

Transform
Matrix
9x9

3x3

Start with full kernel size
Smaller kernel takes centered weights via a transformation matrix

Elastic
Resolution

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

Full Full Full Full

Partial Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

52

7x7

Transform
Matrix
25x25

5x5

Transform
Matrix
9x9

3x3

Start with full kernel size
Smaller kernel takes centered weights via a transformation matrix

Elastic
Resolution

Elastic
Depth

Elastic
Width

Full Full Full Full

Partial Partial

Elastic
Kernel Size

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

53

7x7

Transform
Matrix
25x25

5x5

Transform
Matrix
9x9

3x3

Start with full kernel size
Smaller kernel takes centered weights via a transformation matrix

Elastic
Resolution

Elastic
Depth

Elastic
Width

Full Full Full Full

Partial Partial

Elastic
Kernel Size

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

54

7x7

Transform
Matrix
25x25

5x5

Transform
Matrix
9x9

3x3

Start with full kernel size
Smaller kernel takes centered weights via a transformation matrix

Elastic
Resolution

Elastic
Depth

Elastic
Width

Full Full Full Full

Partial Partial

Elastic
Kernel Size

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

55

7x7

Transform
Matrix
25x25

5x5

Transform
Matrix
9x9

3x3

Start with full kernel size
Smaller kernel takes centered weights via a transformation matrix

Elastic
Resolution

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

Full Full Full Full

Partial Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

56

Elastic
Resolution

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

Full Full Full Full

Partial Partial

unit i

train with full depth

unit i

shrink the depth

O1

O2

unit i

shrink the depth

O1

O2

O3

Gradually allow later layers in each unit
to be skipped to reduce the depth

Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

57

Elastic
Resolution

Elastic
Kernel Size

Elastic
Depth

Elastic
Width

Full Full Full Full

Partial Partial

unit i

train with full depth

unit i

shrink the depth

O1

O2

unit i

shrink the depth

O1

O2

O3

Gradually allow later layers in each unit
to be skipped to reduce the depth

Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

58

Elastic
Resolution

Elastic
Kernel Size

Elastic
Width

Full Full Full Full

Partial Partial

Elastic
Depth

unit i

train with full depth

unit i

shrink the depth

O1

O2

unit i

shrink the depth

O1

O2

O3

Gradually allow later layers in each unit
to be skipped to reduce the depth

Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

59

Elastic
Resolution

Elastic
Kernel Size

Elastic
Width

Full Full Full Full

Partial Partial

Elastic
Depth

unit i

train with full depth

unit i

shrink the depth

O1

O2

unit i

shrink the depth

O1

O2

O3

Gradually allow later layers in each unit
to be skipped to reduce the depth

Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

60

Elastic
Resolution

Elastic
Kernel Size

Elastic
Width

Full Full Full Full

Partial Partial

Elastic
Depth

unit i

train with full depth

unit i

shrink the depth

O1

O2

unit i

shrink the depth

O1

O2

O3

Gradually allow later layers in each unit
to be skipped to reduce the depth

Partial

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

61

unit i

train with full depth

unit i

shrink the depth

O1

O2

unit i

shrink the depth

O1

O2

O3

Gradually allow later layers in each unit
to be skipped to reduce the depth

Elastic
Width

Full Full Full Full

Partial Partial Partial

Elastic
Resolution

Elastic
Kernel Size

Elastic
Depth

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

62

train with full width

channel
importance

0.02

0.15

0.85

0.63

channel
sorting

progressively shrink the width

channel
importance

0.82

0.11

0.46
reorg.

reorg.

progressively shrink the width

channel
sorting

O1
O2

O3

O1

O2

O1

Gradually shrink the width
Keep the most important channels when shrinking via channel sorting

Full Full Full Full

Partial Partial Partial

Elastic
Resolution

Elastic
Kernel Size

Partial

Elastic
Width

Elastic
Depth

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

63

train with full width

channel
importance

0.02

0.15

0.85

0.63

channel
sorting

progressively shrink the width

channel
importance

0.82

0.11

0.46
reorg.

reorg.

progressively shrink the width

channel
sorting

O1
O2

O3

O1

O2

O1

Gradually shrink the width
Keep the most important channels when shrinking via channel sorting

Full Full Full Full

Partial Partial Partial

Elastic
Resolution

Elastic
Kernel Size

Partial

Elastic
Width

Elastic
Depth

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

64

train with full width

channel
importance

0.02

0.15

0.85

0.63

channel
sorting

progressively shrink the width

channel
importance

0.82

0.11

0.46
reorg.

reorg.

progressively shrink the width

channel
sorting

O1
O2

O3

O1

O2

O1

Gradually shrink the width
Keep the most important channels when shrinking via channel sorting

Full Full Full Full

Partial Partial Partial

Elastic
Resolution

Elastic
Kernel Size

Partial

Elastic
Width

Elastic
Depth

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

65

train with full width

channel
importance

0.02

0.15

0.85

0.63

channel
sorting

progressively shrink the width

channel
importance

0.82

0.11

0.46
reorg.

reorg.

progressively shrink the width

channel
sorting

O1
O2

O3

O1

O2

O1

Gradually shrink the width
Keep the most important channels when shrinking via channel sorting

Full Full Full Full

Partial Partial Partial

Elastic
Resolution

Elastic
Kernel Size

Partial

Elastic
Width

Elastic
Depth

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

66

train with full width

channel
importance

0.02

0.15

0.85

0.63

channel
sorting

progressively shrink the width

channel
importance

0.82

0.11

0.46
reorg.

reorg.

progressively shrink the width

channel
sorting

O1
O2

O3

O1

O2

O1

Gradually shrink the width
Keep the most important channels when shrinking via channel sorting

Full Full Full Full

Partial Partial Partial

Elastic
Resolution

Elastic
Kernel Size

Partial

Elastic
Width

Elastic
Depth

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

67

train with full width

channel
importance

0.02

0.15

0.85

0.63

channel
sorting

progressively shrink the width

channel
importance

0.82

0.11

0.46
reorg.

reorg.

progressively shrink the width

channel
sorting

O1
O2

O3

O1

O2

O1

Gradually shrink the width
Keep the most important channels when shrinking via channel sorting

Full Full Full Full

Partial Partial Partial

Elastic
Resolution

Elastic
Kernel Size

Partial

Elastic
Width

Elastic
Depth

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Progressive Shrinking

68

Published as a conference paper at ICLR 2020

7x7

Transform

Matrix

25x25

5x5

Transform

Matrix

9x9

3x3

train with full width

channel

importance

0.02
0.15
0.85
0.63

channel

sorting

progressively shrink the width

unit i

train with full depth

channel

importance

0.82
0.11
0.46

reorg.
channel

sorting

reorg.

progressively shrink the width

channel

sorting .

+
+ +

p1

p2

p3O1

O2

O3O1

O2

O1

unit i

shrink the depth

O1

O2

unit i

shrink the depth

O1

O2

O3

Once-
for-all

Network
K = 7
D = 4
W = 6

Train full
network

Elastic Kernel Size
D = 4, W = 6

K [7, 5, 3]�
Sample K at each layer

Generate kernel
weights (Fig. 3)

Fine-tune weights &
transformation matrix

Elastic Width
D [4, 3, 2], K [7, 5, 3]� �

Channel sorting

Sample E at each

Fine-tune weights

W [6, 4, 3]�
W [6, 4]�

Channel sorting
(Fig. 4)

Sample W at each
layer; sample K, D

Elastic Resolution
R [128, 132, …, 224]� Elastic Depth

W = 6, K [7, 5, 3]�

Sample D at each

Skip top (4-D)

Fine-tune weights

D [4, 3, 2]�
D [4, 3]�

Sample D at each
unit; sample K

Keep the first D layers
at each unit (Fig. 3)

Fine-tune weights Fine-tune weights

1

Figure 2: Illustration of the progressive shrinking process to support different depth D, width W ,
kernel size K and resolution R. It leads to a large space comprising diverse sub-networks (> 1019).

sequence of layers where only the first layer has stride 2 if the feature map size decreases (Sandler
et al., 2018). All the other layers in the units have stride 1.

We allow each unit to use arbitrary numbers of layers (denoted as elastic depth); For each layer,
we allow to use arbitrary numbers of channels (denoted as elastic width) and arbitrary kernel sizes
(denoted as elastic kernel size). In addition, we also allow the CNN model to take arbitrary input
image sizes (denoted as elastic resolution). For example, in our experiments, the input image size
ranges from 128 to 224 with a stride 4; the depth of each unit is chosen from {2, 3, 4}; the width
expansion ratio in each layer is chosen from {3, 4, 6}; the kernel size is chosen from {3, 5, 7}.
Therefore, with 5 units, we have roughly ((3⇥ 3)2 + (3⇥ 3)3 + (3⇥ 3)4)5 ⇡ 2⇥ 1019 different
neural network architectures and each of them can be used under 25 different input resolutions. Since
all of these sub-networks share the same weights (i.e., Wo) (Cheung et al., 2019), we only require
7.7M parameters to store all of them. Without sharing, the total model size will be prohibitive.

3.3 TRAINING THE ONCE-FOR-ALL NETWORK

Naı̈ve Approach. Training the once-for-all network can be cast as a multi-objective problem, where
each objective corresponds to one sub-network. From this perspective, a naı̈ve training approach
is to directly optimize the once-for-all network from scratch using the exact gradient of the overall
objective, which is derived by enumerating all sub-networks in each update step, as shown in Eq. (1).
The cost of this approach is linear to the number of sub-networks. Therefore, it is only applicable to
scenarios where a limited number of sub-networks are supported (Yu et al., 2019), while in our case,
it is computationally prohibitive to adopt this approach.

Another naı̈ve training approach is to sample a few sub-networks in each update step rather than
enumerate all of them, which does not have the issue of prohibitive cost. However, with such a large
number of sub-networks that share weights thus interfere with each other, we find it suffers from
significant accuracy drop. In the following section, we introduce a solution to address this challenge
by adding a progressive shrinking training order to the training process. Correspondingly, we refer to
the naı̈ve training approach as random order.

Progressive Shrinking. The once-for-all network comprises many sub-networks of different sizes
where small sub-networks are nested in large sub-networks. To prevent interference between the
sub-networks, we propose to enforce a training order from large sub-networks to small sub-networks
in a progressive manner. We name this training order as progressive shrinking (PS). An example
of the training process with PS is provided in Figure 2, where we start with training the largest
neural network with the maximum kernel size (i.e., 7), depth (i.e., 4), and width (i.e., 6). Next, we
progressively fine-tune the network to support smaller sub-networks by gradually adding them into
the sampling space (larger sub-networks may also be sampled). Specifically, after training the largest
network, we first support elastic kernel size which can choose from {3, 5, 7} at each layer, while
the depth and width remain the maximum values. Then, we support elastic depth and elastic width
sequentially, as is shown in Figure 2. The resolution is elastic throughout the whole training process,
which is implemented by sampling different image sizes for each batch of training data. We also use
the knowledge distillation technique after training the largest neural network (Hinton et al., 2015;
Ashok et al., 2018; Yu & Huang, 2019b). It combines two loss terms using both the soft labels given
by the largest neural network and the real labels.

4

put it together:

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20 69

Performances of Sub-networks on ImageNet
Im

ag
eN

et
 T

op
-1

 A
cc

 (%
)

67

70

73

75

78
w/o PS w/ PS

D=2
W=3
K=3

D=2
W=3
K=7

D=2
W=6
K=3

D=2
W=6
K=7

D=4
W=3
K=3

D=4
W=3
K=7

D=4
W=6
K=3

D=4
W=6
K=7

2.5%
2.8%

3.5%
3.4% 3.3%

3.4%
3.7%

3.5%

Sub-networks under various architecture configurations
D: depth, W: width, K: kernel size

• Progressive shrinking consistently improves accuracy of sub-networks on ImageNet.

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

How about search?

70

 for OFA training iterations:
 forward-backward();

for devices:

for search episodes:
sample from OFA;
if good_model: break;

training

search
decouple

direct deploy without training;

//with evolution

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

2.6x faster than EfficientNet
1.5x faster than MobileNetV3

71

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

76

77

78

79

80

81

0 50 100 150 200 250 300 350 400

OFA
EfficientNet

76.3

78.8

79.8
79.8

78.7

Google Pixel1 Latency (ms)

80.1 2.6x faster

3.8% higher
accuracy

Google Pixel1 Latency (ms)

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

18 24 30 36 42 48 54 60

OFA
MobileNetV3

75.2

73.3

70.4

67.4

76.4

74.9

73.3

71.4

4% higher
accuracy

1.5x faster

• Training from scratch cannot achieve the same level of accuracy

Once-for-All, ICLR’20

https://arxiv.org/abs/1908.09791
https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

More accurate than training from scratch

72

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

76

77

78

79

80

81

0 50 100 150 200 250 300 350 400

OFA
EfficientNet
OFA - Train from scratch

76.3

78.8

79.8
79.8

78.7

Google Pixel1 Latency (ms)

80.1 2.6x faster

3.8% higher
accuracy

Google Pixel1 Latency (ms)

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

18 24 30 36 42 48 54 60

OFA
MobileNetV3
OFA - Train from scatch

75.2

73.3

70.4

67.4

76.4

74.9

73.3

71.4

4% higher
accuracy

1.5x faster

• Training from scratch cannot achieve the same level of accuracy

Once-for-All, ICLR’20

https://arxiv.org/abs/1908.09791
https://arxiv.org/abs/1908.09791

OFA: 80% Top-1 Accuracy on ImageNet

73

0 1 2 3 4 5 6 7 8 9
MACs (Billion)

69

71

73

75

77

79

81

Im
ag

eN
et

 T
op

-1
 a

cc
ur

ac
y

(%
)

2M 4M 8M

Handcrafted

16M

AutoML

32M 64M

→→

The higher the better

The lower the better

Once-for-All (ours)

EfficientNet

ProxylessNAS
MBNetV3

AmoebaNet

MBNetV2
PNASNet
ShuffleNet
DARTS

IGCV3-D

MobileNetV1 (MBNetV1)

NASNet-A

InceptionV2

DenseNet-121

DenseNet-169

ResNet-50

ResNetXt-50

InceptionV3

DenseNet-264

DPN-92

ResNet-101

Xception

ResNetXt-101

14x less computation
595M MACs
80.0% Top-1

Model Size

• Once-for-all sets a new state-of-the-art 80% ImageNet top-1 accuracy under
the mobile vision setting (< 600M MACs).

Once-for-All, ICLR’20

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20 74

0 1 2 3 4 5 6 7 8 9
MACs (Billion)

69

71

73

75

77

79

81

Im
ag

eN
et

 T
op

-1
 a

cc
ur

ac
y

(%
)

2M 4M 8M

Handcrafted

16M

AutoML

32M 64M

→→

The higher the better

The lower the better

Once-for-All (ours)

EfficientNet

ProxylessNAS
MBNetV3

AmoebaNet

MBNetV2
PNASNet
ShuffleNet
DARTS

IGCV3-D

MobileNetV1 (MBNetV1)

NASNet-A

InceptionV2

DenseNet-121

DenseNet-169

ResNet-50

ResNetXt-50

InceptionV3

DenseNet-264

DPN-92

ResNet-101

Xception

ResNetXt-101

14x less computation
595M MACs
80.0% Top-1

Model Size

Mobile Setting

OFA: 80% Top-1 Accuracy on ImageNet

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

OFA Enables Fast Specialization on Diverse Hardware Platforms

75

Samsung S7 Edge Latency (ms)

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

67

69

71

73

75

77

25 40 55 70 85 100

OFA MobileNetV3 MobileNetV2

75.2

73.3

70.4

67.4

70.5

73.1

74.7

76.3

Google Pixel2 Latency (ms)

67

69

71

73

75

77

23 28 33 38 43 48 53 58 63 68

75.2

73.3

70.4

67.4

75.8
74.7

73.4

71.5

LG G8 Latency (ms)

67

69

71

73

75

77

7 10 13 16 19 22 25

75.2

73.3

70.4

67.4

76.4

74.7

73.0

71.1

To
p-

1
Im

ag
eN

et
 A

cc
 (%

)

58

62

66

69

73

77

10 14 18 22 26 30
NVIDIA 1080Ti Latency (ms)

Batch Size = 64

60.3

65.4

69.8
72.0

72.6
73.8

75.3 76.4

58

62

66

69

73

77

9 11 13 15 17 19
Intel Xeon CPU Latency (ms)

Batch Size = 1

60.3

65.4

69.8
72.0

71.1

74.6
75.7

72.0

58

62

66

69

73

77

3.0 4.0 5.0 6.0 7.0 8.0
Xilinx ZU3EG FPGA Latency (ms)

Batch Size = 1 (Quantized)

59.1

63.3

69.0
71.5

67.0
69.6

72.8
73.7

https://arxiv.org/abs/1908.09791

Once-for-All, ICLR’20

Diverse Hardware Platforms, 50+ Pretriained Models are Released

76

https://arxiv.org/abs/1908.09791

Measured results on FPGA

OFA for FPGA Accelerators

A
rit

hm
et

ic
 In

te
ns

ity
 (

O
P

S
/B

yt
e)

0.0

12.5

25.0

37.5

50.0

ZU
3E

G
 F

P
G

A
(G

O
P

S
/s

)

0.0

20.0

40.0

60.0

80.0

MobileNetV2 MnasNet OFA (Ours)

40%
higher 57%

higher

• Non-specialized neural networks do not fully utilize the hardware resource. There is a large room for
improvement via neural network specialization.

Once-for-All, ICLR’20

https://arxiv.org/abs/1908.09791

We need Green AI
Solve the Environmental Problem of NAS

Evolved Transformer

How to save CO2 emission

2. Lite-transformer: Human-in-the-loop  
design. Apply human insights of HW&ML,  

rather than “just search it”

1. Once for all: Amortize the search cost  
across many sub-networks and  

deployment scenarios

Once-for-All, ICLR’20 Lite Transformer, ICLR’20

https://arxiv.org/abs/1908.09791
https://openreview.net/pdf?id=ByeMPlHKPH

OFA has broad applications

• Efficient Transformer

• Efficient Video Recognition

• Efficient 3D Vision

• Efficient GAN Compression

OFA’s Application: Hardware-Aware Transformer

3.7x smaller model size, same performance on WMT’14 En-De;
3x, 1.6x, 1.5x faster on Raspberry Pi, CPU, GPU than Transformer Baseline

12,000x less CO2 than evolved transformer
HAT, ACL’20

8

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

ACL 2020 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Table 1

Human Life 11023 5000

American Life 36156

US car including
fuel

126000

Evolved
Transformer

626155

HAT (Ours) 6000

626,155

126,000

36,156

11,023Human Life
(Avg. 1 year)

American Life
(Avg. 1 year)
US Car w/ Fuel
(Avg. 1 lifetime)

Evolved
Transformer

HAT (Ours) 52 12041×

0 175K 350K 525K 700K
CO2 Emission (lbs)

Figure 9: The design cost measured in pounds of
CO2 emission. Our framework for searching HAT re-
duces the search cost by four orders of magnitude than
Evolved Transformer (So et al., 2019).

top ones; on the contrary, HAT trains all models
together inside SuperTransformer and sorts their
performance proxy to pick top ones. The superior
performance of HAT proves that the performance
proxy is accurate enough to find good models.

Quantization-Friendly. HAT is orthogonal to
other model compression techniques such as quan-
tization. We apply K-means quantization to HAT
and further reduce the model size. We initialize
centroids uniformly in the range of [min, max] of
each weight matrix and run at most 300 iterations
for each of them. Even without any fine-tuning, 4-
bit quantization can reduce the model size by 25⇥
with negligible BLEU loss compared to the Trans-
former baseline (Table 5). Interestingly, the 8-bit
model even increases the BLEU by 0.1 than the 32-
bit floating-point version, indicating the robustness
of our searched HAT.

5 Related Work
Transformer. Transformer (Vaswani et al., 2017)
has prevailed in sequence modeling. By stacking
identical blocks, the model obtains a large capac-
ity but incurs high latency. Recently, a research
trend is to modify the Transformer to improve the
performance (Chen et al., 2018; Wu et al., 2019b;
Sukhbaatar et al., 2019; Wang et al., 2019). Among
them, Wu et al. (2019b) introduced a convolution-
based module to replace the attention; Wang et al.
(2019) proposed a method for training deep Trans-
formers by propagating multiple layers together in
the encoder. In those architectures, all layers are
still identical without fully leveraging the design
space. Another trend is to apply non- or partially-
autoregressive models to cut down the iteration
number for decoding (Gu et al., 2019; Akoury et al.,
2019; Wei et al., 2019; Gu et al., 2018). Although
reducing latency, they all suffer from low perfor-
mance. Anonymous (2020) investigated mobile

BLEU Model Size Reduction

Transformer Float32 41.2 705MB –
HAT Float32 41.8 227MB 3⇥
HAT 8 bits 41.9 57MB 12⇥
HAT 4 bits 41.1 28MB 25⇥

Table 5: K-means quantization of HAT models on
WMT’14 En-Fr. 4-bit quantization reduces model size
by 25⇥ with only 0.1 BLEU loss than transformer base-
line. 8-bit quantization even increases BLEU by 0.1
than its float version.

settings for NLP tasks and proposed a multi-branch
mobile Transformer. However, it relied on FLOPs
for efficient model design, which is an inaccurate
proxy for hardware latency (Figure 2).

Neural Architecture Search. In the computer
vision community, to obtain efficient models, there
has been an increasing interest in automating
model design with Neural Architecture Search
(NAS) (Zoph and Le, 2017; Zoph et al., 2018;
Pham et al., 2018). Some of them also involved
hardware constraints into optimization such as
MNasNet (Tan et al., 2019), ProxylessNAS (Cai
et al., 2019b) and FBNet (Wu et al., 2019a). To
reduce the high design cost of NAS, supernet based
methods (Guo et al., 2019; Bender et al., 2018) ap-
ply a proxy for sub-network performance and adopt
search algorithms to find good sub-networks. For
NLP tasks, the benefits from the architecture search
have not been fully investigated. Recently, So et al.
(2019) proposed Evolved Transformer to search
for architectures under model size constraints and
surpassed the original Transformer baselines. How-
ever, it suffered from extremely high search costs
(250 GPU years), making it infeasible to special-
ize models for various hardware and tasks. Also,
hardware latency feedback was not taken into con-
siderations for better case-by-case specialization.

6 Conclusion

We propose Hardware-Aware Transformers (HAT)
framework to solve the challenge of efficient Trans-
former model deployment on the various kinds of
hardware platforms. We conduct hardware-aware
neural architecture search in an ample design space
with an efficient weight-shared SuperTransformer,
which consumes four orders of magnitude less cost
than the prior Evolved Transformer and discovers
high-performance low-latency models. We hope
HAT can open up an avenue towards efficient Trans-
formers deployment for real-world applications.

��������� $UWERDUG��

ÀOH����8VHUV�KDQUXLZDQJ�'RZQORDGV�QRXQBVSHDNB��������VYJ ���

*YLH[LK�I`�.YLNVY�*YLZUHY
MYVT�[OL�5V\U�7YVQLJ[

���������$UWERDUG��

ÀOH����8VHUV�KDQUXLZDQJ�'RZQORDGV�QRXQBVSHDNB��������VYJ���

*YLH[LK�I`�.YLNVY�*YLZUHY
MYVT�[OL�5V\U�7YVQLJ[

��������� QRXQBVPDUW�SKRQHB�������VYJ

ÀOH����8VHUV�KDQUXLZDQJ�'RZQORDGV�QRXQBVPDUW�SKRQHB�������VYJ ���

*YLH[LK�I`�3PHT�4P[JOLSS
MYVT�[OL�5V\U�7YVQLJ[

“Nice to meet you” “Encantada de conocerte”
“만나서 반갑습니다”
“உṛيᥠ֦ک”
“Freut mich, dich kennenzulernen”

Efficient NLP on mobile devices
enable real time conversation
between speakers using different
languages

��������� QRXQBVSHHG�PHWHUB��������VYJ

ÀOH����8VHUV�KDQUXLZDQJ�'RZQORDGV�QRXQBVSHHG�PHWHUB��������VYJ ���

*YLH[LK�I`�RPKKV
MYVT�[OL�5V\U�7YVQLJ[

��������� QRXQB%DWWHU\�&KDUJLQJB��������VYJ

ÀOH����8VHUV�KDQUXLZDQJ�'RZQORDGV�QRXQB%DWWHU\�&KDUJLQJB��������VYJ ���

*YLH[LK�I`�(KYPLU�*VX\L[
MYVT�[OL�5V\U�7YVQLJ[

K
in

et
ic

s
To

p-
1

Ac
cu

ra
cy

 (%
)

69

70

71

72

73

74

75

Computation (GFLOPs)

0 10 20 30 40

Same Acc.OFA + TSM (large)

OFA + TSM (small)

MobileNetV2 + TSM

ResNet50 + TSM

ResNet50 + I3D

7x less computation

Same Comp.
+3.0% Acc.

TSM, ICCV’19

OFA’s Application: Efficient Video Recognition

7x less computation, same performance as TSM+ResNet50
same computation, 3% higher accuracy than TSM+MobileNet-v2

OFA’s Application: Efficient 3D Recognition

self-driving: a whole trunk of GPU
Accuracy v.s. Latency Tradeoff

4x FLOPs reduction and 2x speedup over MinkowskiNet
3.6% better accuracy under the same computation budget.

AR/VR: a whole backpack
of computer

followup of PVCNN, NeurIPS’19 (spotlight)

https://github.com/mit-han-lab/pvcnn

84GAN Compression, CVPR’20

OFA’s Application: GAN Compression

8-21x FLOPs reduction on CycleGAN, Pix2pix, GauGAN
1.7x-18.5x speedup on CPU/GPU & Mobile CPU/GPU

https://arxiv.org/pdf/2003.08936.pdf

Summary: Once-for-All Network

• Released 50+ different pre-trained OFA models on diverse hardware platforms (CPU/GPU/FPGA/DSP).
net, image_size = ofa_specialized(net_id, pretrained=True)

• Released the training code & pre-trained OFA network that provides diverse sub-networks without training.
ofa_network = ofa_net(net_id, pretrained=True)

• We introduce once-for-all network for efficient inference on diverse hardware platforms.
• We present an effective progressive shrinking approach for training once-for-all networks.

Project Page: https://ofa.mit.edu

• Once-for-all network surpasses MobileNetV3 and EfficientNet by a large margin under all scenarios,
setting a new state-of-the-art 80% ImageNet Top1-accuracy under the mobile setting (< 600M MACs).

• First place in the 3rd Low-Power Computer Vision Challenge, DSP track @ICCV’19
• First place in the 4th Low-Power Computer Vision Challenge @NeurIPS’19, both classification & detection.

Train the
full model

Shrink the model
In 4 dimensions

Fine-tune
both large and
small sub-nets

once-for-all
network

Progressive Shrinking

http://www.apple.com

References

86

 Model Compression & NAS
- Once-For-All: Train One Network and Specialize It for Efficient Deployment, ICLR’20
- ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware, ICLR’19
- APQ: Joint Search for Network Architecture, Pruning and Quantization Policy, CVPR’20
- HAQ: Hardware-Aware Automated Quantization with Mixed Precision, CVPR’19
- Defensive Quantization: When Efficiency Meets Robustness, ICLR’19
- AMC: AutoML for Model Compression and Acceleration on Mobile Devices, ECCV’18

Efficient Vision:
- GAN Compression: Learning Efficient Architectures for Conditional GANs, CVPR’20
- TSM: Temporal Shift Module for Efficient Video Understanding, ICCV’19
- PVCNN: Point Voxel CNN for Efficient 3D Deep Learning, NeurIPS’19

Efficient NLP:

- Lite Transformer with Long Short Term Attention, ICLR’20
- HAT: Hardware-aware Transformer, ACL’20

 Hardware & EDA:
- SpArch: Efficient Architecture for Sparse Matrix Multiplication, HPCA’20
- Transferable Transistor Sizing with Graph Neural Networks and Reinforcement Learning, DAC’20

https://arxiv.org/pdf/1908.09791.pdf
https://arxiv.org/pdf/1812.00332
http://cvpr2020.thecvf.com
https://arxiv.org/abs/1811.08886
https://arxiv.org/pdf/1904.08444.pdf
https://arxiv.org/pdf/1802.03494
https://arxiv.org/pdf/2003.08936.pdf
https://arxiv.org/pdf/1811.08383.pdf
https://arxiv.org/pdf/1907.03739.pdf
https://openreview.net/forum?id=ByeMPlHKPH
https://acl2020.org
https://arxiv.org/pdf/2002.08947.pdf
https://dac.com

Make AI Efficient:
Tiny Computational Resources
Tiny Human Resources

Media Coverage:

Website: songhan.mit.edu youtube.com/c/MITHANLabgithub.com/mit-han-lab

https://songhan.mit.edu
http://youtube.com/c/MITHANLab
https://github.com/mit-han-lab

